

Intelligent Synthesis Environment

Intelligent Synthesis Environment Industry/Academia Workshop

Overview

Dr. John B. Malone Agency Manager, ISE Functional Initiative Director, ISE Program Office j.b.malone@larc.nasa.gov (757) 864-1100

NASA's Future Mission Challenges

Intelligent Synthesis Environment Industry/Academia Workshop

NASA's enterprises envision a myriad of highly complex, first-of-a-kind, missions which must be developed and executed within reduced budget, workforce and time constraints

Single Stage to Orbit Launch Vehicles

Advanced Aircraft Concepts

Shuttle Upgrades/ISS Operations

Human Exploration

Earth Science Sensing Fleet

Next Generation Astronomy

Planetary Sample Return

Near-Sun Measurements

NASA's Challenges

- NASA faces challenging 21 century mission to understand and explore space, understand earth, and advance aeronautics at affordable cost and minimal risk while maximizing science return
- To effect a major change in its engineering environment
 - to maximize utilization of new concepts and technologies,
 - to reduce overall development and life-cycle costs
 - to improve system/mission performance, and
 - to improve risk assessment, failure avoidance and anomaly correction capability
- To implement its strategic plan to advance and maintain the level of engineering used in NASA's programs at the cutting edge of, or leading, the evolving state of the art.

Critical Engineering Development Issues* Must

Intelligent Synthesis Environment Industry/Academia Workshop

•Category: Design Tools

- •Lack of accurate costing and risk prediction methods
- •Long model development and simulation time

Category: Design process

- •Design development cycle remains essentially sequential 10 years after concurrent engineering philosophy adopted by government and industry
- •Design and development process steps and their interactions not well understood leading to large design iterations
- •Lack of tool integration except at a conceptual design level
- •Current design process relies too heavily on testing

•Category: Insertion of new technology

•Takes many years for new technology to enter practice

•Category: Design creativity

- •Design creativity inhibited by clumsy processes, empirical tools and lack of collaboration
- •Little collaboration between scientists, engineers, operations and training personnel

^{*} Code R sponsored Design Tools Roadmapping Workshop, August 17-19, 1998

Product Development Cycle and Costs Must Be Reduced

Intelligent Synthesis Environment Industry/Academia Workshop

Today's process: 90% of costs are committed to within the first 10% of the development cycle. Changes are very costly!

Tomorrow's process: Greatly increased knowledge is needed during design process to eliminate need for late-in-the-cycle design changes

Current Design Process Is Highly Dependent On Ground and Flight Testing

Example: Test-Failure-Fix cycle for a commercialized rocket engine using only incremental technology improvements - new technologies even more costly to incorporate. (New car models follow a similar cost profile!)*

from: Allen & Jarman, Collaborative R&D, Manufacturing's New Tool

Future Engineers Need A Highly Integrated Analysis and Design Capability

Intelligent Synthesis Environment Industry/Academia Workshop

Discipline Tools

Overview 6

Engineering Environments Must Change to Meet Challenges of 21st Century Mission

Intelligent Synthesis Environment Industry/Academia Workshop

Digital Life & Full Virtual Product

Where we Need to be

Where we are now-

Where we've been

ISE Vision and Long-Term Goal

Intelligent Synthesis Environment Industry/Academia Workshop

Vision

To effect a cultural change that integrates into practice widely-distributed science, technology and engineering teams to rapidly create innovative, affordable products

Long-Term Goal

To develop the capability for personnel at dispersed geographic locations to work together in a virtual environment, using computer simulations to model the complete life-cycle of a product/mission with near real-time response time before

Administrator's "Pathway to the Future" Vision

Multi-Media CD-ROMS

Publications

A "Holodeck-Like" Design Capability for 21st Century Science and Engineering Teams

- Engineers/Scientists can experience complete immersion and sensory feedback within the design environment
- Near real-time design changes with resulting impacts to <u>all</u> elements of the product/mission <u>life-cycle</u>
- A true multidisciplinary design environment with instantaneous sharing of data and knowledge between Science and Engineering experts
- Close coupling of Science Mission Requirements and Engineering product/platform solutions prior to acquisition "go-ahead"

ISE 5-Year Goal

Intelligent Synthesis Environment Industry/Academia Workshop

To develop the capability for personnel at dispersed geographic locations to work together in a virtual environment, using computer simulations to rapidly model the complete life-cycle of a product/mission before commitments are made to produce physical products

A Functional Initiative Which Supports All NASA Strategic Initiatives

Intelligent Synthesis Environment

ISE Initiative Formulated to Achieve Administrator's Vision

Elements of the ISE Functional Initiative

Intelligent Synthesis Environment Industry/Academia Workshop

Simulation Tools

Life-Cycle

Integration and Validation

Integrate Tools Together and with new IT *and VR** capabilities

Incorporate new ISE capabilities into NASA Engineering practice

Cost and Risk Management Technology

Collaborative Engineering Environment

Information Technologies

** Virtual Reality

Pave the way for ISE acceptance by NASA engineers and project managers

Revolutionize Cultural Change, **Training and Education**

Elements of the ISE Functional Initiative

Intelligent Synthesis Environment Industry/Academia Workshop

Rapid Synthesis and Simulation Tools

Developing advanced intelligence-based engineering and science simulation tools for analysis and design from concept through disposal and synthesis tools for seamless coupling of diverse discipline tools

Cost and Risk Management Technology

Develop advanced cost analysis and risk tools in a unified framework covering end-to-end mission design, and compatible with design and analysis tools for fully integrated life cycle simulations.

<u>Life-Cycle</u> <u>Integration and Validation</u>

Developing integration methods, smart interfaces and frameworks to achieve seamless "plug and play" integrated design and analysis, and assessment, validation and demonstration of ISE technologies.

Collaborative Engineering Environment

Advancing the state of practice and inserting the state of the art collaborative infrastructure and applied design and analysis capabilities into enterprise use.

Revolutionize Cultural Change, Training and Education

Changing the engineering culture to take full advantage of advanced tools and environments and developing distributed active learning and training collaborative environment

Overview 15

ISE Planning Requirements Flow

Intelligent Synthesis Environment Industry/Academia Workshop

Revolutionize Cultural Change, Training and Education

Large-Scale Applications (LSAs)

Intelligent Synthesis Environment Industry/Academia Workshop

Reusable Space Transportation Systems

Shuttle/International Space Station

Integrated Exploration and Science

Advanced Earth Observation

- Tightly couples NASA R&D Center research products to Development Centers Needs
- An integration of computer hardware, software and facilities that enables the development of a design/analysis capability focused on specific mission needs

ISE Far-Term Program Roadmap

Intelligent Synthesis Environment Industry/Academia Workshop

Vision: To effect a cultural change that integrates widely-distributed science, technology and engineering teams to rapidly create innovative, affordable products.

ISE Initiative

Program Elements Rapid Synthesis and Simulation Tools Cost and Risk Management Technology Life-Cycle Integration and Validation Collaborative

Engineering

Environment

• Revolutionize

Training and

Education

Cultural Change,

Near-Term 1999-2001

- Integrated, "Best-in-Practice" engineering tools
- Full mission life cycle cost and risk analysis
- Geographically distributed, electronically collaborating teams
- Upgrade skills of technical employees
- Collaborative Video Conferencing

Mid-Term 2002-2004

- Networked high fidelity design, nontraditional tools
- Design intelligence for mission cost and risk optimization
- State of the art practice in all NASA engineering
- Innovative university education programs

Far-Term 2005-2015

- Engineers and scientists collaborating on virtual and real missions in a networked immersive environment
- Confident capability for accurate cost and risk trades on complex first-of-a-kind missions
- Collaborative immersion and virtual co-location

ISE Customers

- The NASA Administrator wants ISE to provide the engineering environment, tools, and related capabilities NASA needs to accomplish its future missions
 - Primary customer for ISE is NASA
 - Foremost needs/requirements are identified by ISE Large-Scale Application (LSA) Testbeds
- The ISE plan <u>will attempt</u> to satisfy both NASA and its customers requirements
 - ISE will be planned with customer participation and technical input
 - External customer advisory group will formed
- Potential external customers/partners
 - Other Government Agencies
 - Aerospace industry <u>and</u> Non-aerospace industry
 - Hardware/software vendors
 - Engineering software vendors
 - Universities

What ISE Is and Is Not

- ISE is about mainstream <u>Computational Life-Cycle Simulations</u>, and will not be directly involved with (i.e. will not fund):
 - Discipline technology developments (e.g. new material concepts, etc.)
 - Physical experiments or component testing (e.g. wind tunnel testing, etc.)
 - Physical mock-ups of technology concepts (e.g. configuration mockups, etc.)
 - Sensor and other test measurement device development
 - Computational work not directly in mainstream of ISE or LSA's

What ISE Is and Is Not (cont'd)

- ISE does not <u>intend</u> to pick-up funding responsibility for most <u>on-going</u> computational efforts within current NASA programs, but <u>does intend</u> to fund new methods which hold promise of eventually achieving ISE goals
 - On-going programs should continue to support computational efforts that are deemed important to their goals/objectives
 - It is hoped that some on-going programs will choose to redirect appropriate activities to reflect ISE goals

What ISE Is and Is Not (cont'd)

- Requires the successful development of many technologies not directly funded by ISE, for example:
 - advanced computing architectures
 - human-centered interactions
 - advanced, high-speed networking
 - secure networking and databases
 - experimental and test data for software validation, including simulation data and multidisciplinary data
- Therefore ISE will attempt to leverage on-going research in NASA and OGA programs
 - There is currently ~ \$200M in on-going OGA programs in related areas
 - Where possible, ISE will form co-operative activities with other NASA
 Programs such as Intelligent Systems (IS), the OA-ST Base Programs,
 HPCC, etc.
 - Where possible, ISE will form co-operative activities with US Government
 Agencies who have mutual interests in the simulation arena

ISE Sets Challenging Stretch Goals

- •The attainment of ISE requires many significant advances in simulation capabilities a few are:
 - Simulation of complete life-cycle for different candidate engineering solutions
 - Variable modeling complexity requirements for conceptual, preliminary, detailed design phases
 - Integrated simulations of Fabrication, Manufacturing, Repair, Maintenance, and Operations together with physicsbased analysis/design methods
 - Elimination of time-consuming, human-in-the-loop surface and volumetic gridding requirements for certain methods
 - Orders of magnitude increases in computational speeds
 - Total integration of different discipline modeling methods
 - Practical "software Intelligent Agents" to support human engineers/scientists
- Requires people/organizations with similar vision and enthusiasm to accomplish its objectives

ISE - A Multi-Center Management Structure

ISE Planning and Product Teams

Intelligent Synthesis Environment Industry/Academia Workshop

Technology Working Groups
Strive for Consensus in
Technical Plans, Funding
Requirements,
Lead/Participating Centers,
Deliverables, etc.

ISE Program Office Director and Deputy Director

NASA Element Core Team

Element Manager and Deputy Manager

+

One Member From each Center (including JPL)

Balanced Technical Program Element Plans

One-or-more ISE Technology Working Groups (TWG) per Element. Membership: NASA, OGA, Industry and Universities

Advisory

ISE Funding Profile

Intelligent Synthesis Environment Industry/Academia Workshop

* Carryover of Reprogrammed FY99 \$'s for ISE

ISE: A Challenging Stretch Goal for the 21st Century

Intelligent Synthesis Environment Industry/Academia Workshop

Successful development of the ISE Vision will require the combined efforts of NASA, Aerospace and Non-Aerospace Industry, Academia, and Professional Societies